A Cauchy integral formula in superspace
نویسندگان
چکیده
In previous work the framework for a hypercomplex function theory in superspace was established and amply investigated. In this paper a Cauchy integral formula is obtained in this new framework by exploiting techniques from orthogonal Clifford analysis. After introducing Clifford algebra valued surfaceand volume-elements first a purely fermionic Cauchy formula is proven. Combining this formula with the already well-known bosonic Cauchy formula yields the general case. Here the integration over the boundary of a supermanifold is an integration over as well the even as the odd boundary (in a formal way). Finally, some additional results such as a Cauchy-Pompeiu formula and a representation formula for monogenic functions are proven. MSC 2000 : 30G35 (primary), 58C50 (secondary)
منابع مشابه
CALCULATION OF NON LIFTING POTENTIAL FLOW USING DESINGULARIZED CAUCHY\'S FORMULA
This paper discusses the disturbance velocity and potential as well as the total velocity formulation for non lifting potential flow problem. The problem is derived based on the Cauchy method formulation. The adding and subtracting back technique is used to desingularize the integral equations. The desingularized boundary integral equations are then discretized. The discretized equations can be...
متن کاملExistence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition
In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.
متن کاملPlemelj Formula of Cauchy-Type Integral of Random Process with Second Order Moment
The research is Supported by Natural Science Foundation of Fujian Province, China (2007J0183). Abstract Under the condition of arc-wise smooth path of integration, the Plemelj formula of Cauchy-type integral on random process with second order moment is obtained.
متن کاملIntegration of Grassmann variables over invariant functions on flat superspaces
We study integration over functions on superspaces. These functions are invariant under a transformation which maps the whole superspace onto the part of the superspace which only comprises purely commuting variables. We get a compact expression for the differential operator with respect to the commuting variables which results from Berezin integration over all Grassmann variables. Also, we der...
متن کاملCauchy Kernels for some Conformally Flat Manifolds
Here we will consider examples of conformally flat manifolds that are conformally equivalent to open subsets of the sphere S. For such manifolds we shall introduce a Cauchy kernel and Cauchy integral formula for sections taking values in a spinor bundle and annihilated by a Dirac operator, or generalized Cauchy-Riemann operator. Basic properties of this kernel are examined, in particular we exa...
متن کامل